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Combinatorial optimization over graph
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NP-hard problems

0 0
Manually A
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Repeat till all edges covered: Can we learn
e Select uncovered edge with largest total degree = \ fromdata? )




GNN = Parametrized distributed local graph algorithm
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Distributed Local Graph Algorithm =

Graph Representation + Iterative Update
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Differentiable Algorithm Discovery (DAD) framework

1. Can we discover new algorithms? 2. How to learn these algorithms? 3. Can we interpret

Supervised, Unsupervised What’s dlscovered?
Reinforcement Learning
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Search (Input) Space Design
for GNN



Motivating example

» The best known algorithm for solving a general linear system takes time O (n%373)
o Kelneretal. (2013) proposed an algorithm for solving Laplacian system:
Lx = b, where L is Laplacian matrix

in nearly-linear time.

Step 1: Find a low-stretch spanning tree Step 2: Refine the initialized solution by iteratively
and obtain an initial solution on the tree. operating on local cycles in the original graph.
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Cheap Solution as Global Features

input graph G spanning tree optimal solutions y over tree
with dynamic programming
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Cheap Solution as Global Features

Input graph

G

Spanning trees

T(1), ..., T(n)

Optimal solutions over trees
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Cheap Solution as Global Features

Global Features
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Learning Local Iterative Algorithms
with GNN



Supervised

» Foreach graph G, a solution y™ is obtained by running expensive solver

» Learn GNN-based algorithm which can imitate y™ but runs much faster
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Unsupervised

o Many graph problems can be formulated as integer programming (IP) problems:

min_f(Y;G) subjectto g;(y;G) <0 fori=1,...,1
ye{0,1}IVI

» Construct unsupervised training loss based on optimization objective / and constraints g
Ly(p,G) = Elf(Y;G)] + B - Plg:(Y; G) < O]
where Y ~ Bernoulli(p)
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Better learned algorithms with global information

o Comparison of our features to other features
¢ Random features
e Random one-hot encoding
e Port Numbering + Weak 2-coloring (CPNGNN)

Our approach is consistently better
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A deeper understanding of the performance

¢ Extrapolation
o train on small graphs
o test on graphs up to 1024 nodes
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Explain the Learned GNN Algorithms



Explainer

Y; ~ Bernoulli(p;)

0.9 '7 o Node selection probability
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Explainer architecture

Learned
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Explainer:
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Information theoretic learning
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Discovery of greedy-like behavior

¢ Explanation setting:
¢ limitto 5 nodes and 10 edges to explain each target node

Minimum
Vertex
Cover

o Takeaway:
o Greedy heuristics are the best performing ones on these tasks
o GNN understands and learns the meaning of greedy algorithm features
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Discovery of anchor nodes What global features are effective?
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Discovery of anchor nodes

o Node color: the darker, the more frequent of being selected for explanation
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o Observation ¢ Hypothesis
o There exists a set of o Anchornodes are like "landmarks" in the graph
"anchor nodes” I:> » GNN compares the target node with anchor nodes to make prediction
» Anchor nodes tends to be G

diverse » Connections: GNN with anchor nodes: Position/distance
aware GNNs (You et.al, 2018; Li et.al, 2020)
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What global features are effective?

¢ Explanation setting:
o Max-cut problem
¢ limitto 2 or 3 global features

» Budget=2 L L | FEATURES » Budget=3
- . - N L .
» Greedy is always selected; B " ree dy | « feature selection is consistent
o AKPW or max-spanning tree can B ] across different target nodes;
be selected with equal chances; — I MiESP o The {Greedy, AKPW, Max-
o Two max-spanning tree solutions = = | axpW Spanning} are the best performing
will not be selected at the same —— @ three;
time; . - Ma’;SPli o Again, two Max-spanning trees
I Max_spzi solutions will not appear at the
Budget = 2 S ' same time, even though itself

performs better than AKPW;
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