A Framework for Differentiable Discovery
Of Graph Algorithms

Hanjun Dai, Xinshi Chen, Yu Li, Xin Gao and Le Song

- "4{
>

\

Google Research & Georgia Tech & KAUST

Combinatorial optimization over graph

0 0 0 Minimum vertex cover

0

min 2 Xi
‘ %€{0.1}
1 LEV

1
E s.t.x;+x;, =2 1,V(,j) €E

‘ Xi I' 0

NP-hard problems

0 0
Manually A
2 - approximation algorithm for minimum vertex cover designed policy.
Repeat till all edges covered: Can we learn
e Select uncovered edge with largest total degree = \ fromdata?)

GNN = Parametrized distributed local graph algorithm

4 N
Distributed Local Graph Algorithm =

Graph Representation + Iterative Update
L J

Edge attribute,
raw info.

Node attribute,
raw info X

n H hy =T (X {hj}jeN(i))

Differentiable Algorithm Discovery (DAD) framework

1. Can we discover new algorithms? 2. How to learn these algorithms? 3. Can we interpret

Supervised, Unsupervised What’s dlscovered?
Reinforcement Learning

Global Features

S Graph Instance Learn Graph Explainable
Tree 1 with Augmented Neural Networks Model
Global Features
Spanning Augment
Tree N
O
Greedy
Solution

Search (Input) Space Design
for GNN

Motivating example

» The best known algorithm for solving a general linear system takes time O (n%373)
o Kelneretal. (2013) proposed an algorithm for solving Laplacian system:
Lx = b, where L is Laplacian matrix

in nearly-linear time.

Step 1: Find a low-stretch spanning tree Step 2: Refine the initialized solution by iteratively
and obtain an initial solution on the tree. operating on local cycles in the original graph.
spanning tree T G spanning tree T’ G
S
SIS
IS

Cheap Solution as Global Features

input graph G spanning tree optimal solutions y over tree
with dynamic programming

\ v

Cheap Solution as Global Features

Input graph

G

Spanning trees

T(1), ..., T(n)

Optimal solutions over trees

yT@ T

Cheap Solution as Global Features

Global Features

Spanning
Tree 1
Optimal solutions on

. Graph Instance
N spanning trees ~ . P

with Augmented Global Features
Spanning
 TreeN Augment i
Greedy i i
Solution 1
Approximate solutions

obtained via M greedy - :
Greedy
\Solution M

algorithms on original graph

Learning Local Iterative Algorithms
with GNN

Supervised

» Foreach graph G, a solution y™ is obtained by running expensive solver

» Learn GNN-based algorithm which can imitate y™ but runs much faster

Graph Instance G . probability of label 1
with Global Node Features X Node embeddings

T itiev
and Global Edge Features Z {hi }iEV

0.8 . 0.1

0.9 — 0)

i output layer > ,@ 9
yer . ‘

0.3 ' 0.4

098 0.2

@ Selection by y*

11

Unsupervised

o Many graph problems can be formulated as integer programming (IP) problems:

min_f(Y;G) subjectto g;(y;G) <0 fori=1,...,1
ye{0,1}IVI

» Construct unsupervised training loss based on optimization objective / and constraints g
Ly(p,G) = Elf(Y;G)] + B - Plg:(Y; G) < O]
where Y ~ Bernoulli(p)

Graph Instance G . probability of label 1
with Global Node Features X Node er;nbeddmgs {v:}iev
and Global Edge Features Z {hi }iEV
0.8 0.7 0.1

* 0.9
T-hop GNN > tout | >
i i i output iayer 0.3 .

12

Better learned algorithms with global information

o Comparison of our features to other features
¢ Random features
e Random one-hot encoding
e Port Numbering + Weak 2-coloring (CPNGNN)

Our approach is consistently better

' A o
s = Bl
-

1.02 =
1.00353=

1.0030

=

© 1.0025 -

-

S_ 1.0020 -

= 1.0015

fe)

£ 1.0010-

o
1.0005 -

1.0000-

o

DAD
CPNGNNs
Onehot
RandFeat

Minimum
Vertex
Cover

16-20 32-40 64-75 128-150 256-300
nodes in train/test graphs

13

A deeper understanding of the performance

¢ Extrapolation
o train on small graphs
o test on graphs up to 1024 nodes

1.035 1)

*@ 1.025 4 ——-DAD-16-20

c < DAD-32-40

= 1.020 1 DAD-64-75

5 | DAD-128-150

% LO1ST _ bAp-256-300

g 1.010 1 — LogN-Approx

< 1.005- /

—

1.000 -

16 32 64 128 256 512 1024
nodes in test graphs

Minimum Vertex Cover on Barabasi Albert random graphs

14

Explain the Learned GNN Algorithms

Explainer

Y; ~ Bernoulli(p;)

0.9 '7 o Node selection probability
Learned i GNN) |Output Layer " 9 pi = Output (hgﬂ)
Algorithm: 0.3 0,1 .
OO

T-hop subgraph

(Vs, Es, Ss)
Selected Graph Structure & Features

Explainer architecture

Learned

Algorithm: i i

Explainer:

T-hop subgraph

0.9 O—O) Node selection prob(aTt)nluty
GNN) |Output Layer _ p; = Output (hi)
0.3 L _

Y; ~ Bernoulli(p;)

Node embeddings o
(Vs, Es, Ss)
Selected Graph Structure & Features

Information theoretic learning

0.9 ' O Node selection prob(aTt)nIlty
Learned GNN »|Output Layer : p; = Output (hi)
Algorithm: i i i 033 T Y; ~ Bernoulli(p;)

maximize
mutual information
MI(Y;; (Vs, Es, Ss))

T-hop subgraph

Top k1

<

Node embeddings o
(Vs, Es, Ss)
Selected Graph Structure & Features

v

Top k3 0

Explainer:

Top k2

A 4

Discovery of greedy-like behavior

¢ Explanation setting:
¢ limitto 5 nodes and 10 edges to explain each target node

Minimum
Vertex
Cover

o Takeaway:
o Greedy heuristics are the best performing ones on these tasks
o GNN understands and learns the meaning of greedy algorithm features

19

Discovery of anchor nodes What global features are effective?

Minimum Vertex Cover Max-Cut
AN W ’ir'E'AiUé'E's; IIII
O |
O .
@) O O B - Greedy :
0o g f O H
O O - Mln Sp .
O O _n
O — AKPW
a O '®) o — =
O l Max-Spl
® O B - Max S 2
0 N e

Budget = 2 \ Budget =3

20

Q/A

Discovery of anchor nodes

o Node color: the darker, the more frequent of being selected for explanation

- =5 O O
Minimum O 0o O ®
Vertex OO O
Cover O O
o O o 5
O
® O
e O
o Observation ¢ Hypothesis
o There exists a set of o Anchornodes are like "landmarks" in the graph
"anchor nodes” I:> » GNN compares the target node with anchor nodes to make prediction
» Anchor nodes tends to be G

diverse » Connections: GNN with anchor nodes: Position/distance
aware GNNs (You et.al, 2018; Li et.al, 2020)

22

What global features are effective?

¢ Explanation setting:
o Max-cut problem
¢ limitto 2 or 3 global features

» Budget=2 L L | FEATURES » Budget=3
- . - N L .
» Greedy is always selected; B " ree dy | « feature selection is consistent
o AKPW or max-spanning tree can B] across different target nodes;
be selected with equal chances; — I MiESP o The {Greedy, AKPW, Max-
o Two max-spanning tree solutions = = | axpW Spanning} are the best performing
will not be selected at the same —— @ three;
time; . - Ma’;SPli o Again, two Max-spanning trees
I Max_spzi solutions will not appear at the
Budget = 2 S ' same time, even though itself

performs better than AKPW;

23

