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Motivation

« Machine Learning (ML) models are used for decision-making in a
diverse set of fields, e.g., spam filtering, dynamic pricing, etc.
 “Black box” models are typically used for the purpose
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Motivation

« Machine Learning (ML) models are used for decision-making in a
diverse set of fields, e.g., spam filtering, dynamic pricing, etc.
 “Black box” models are typically used for the purpose

* Increasingly, ML is being used in high human-impact areas,

e.g., healthcare, criminal justice, etc.
« Explainable ML is the need of the hour
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Stop explaining black box machine learning
models for high stakes decisions and use
interpretable models instead

Cynthia Rudin

Black box machine learning models are currently being used for high-stakes decision making throughout society, causing prob-
lems in healthcare, criminal justice and other domains. Some people hope that creating methods for explaining these black box
models will alleviate some of the problems, but trying to explain black box models, rather than creating models that are inter-
pretable in the first place, is likely to perpetuate bad practice and can potentially cause great harm to society. The way forward
is to design models that are inherently interpretable. This Perspective clarifies the chasm between explaining black boxes and
using inherently interpretable models, outlines several key reasons why explainable black boxes should be avoided in high-
stakes decisions, identifies challenges to interpretable machine learning, and provides several example applications where
interpretable models could potentially replace black box models in criminal justice, healthcare and computer vision.

DEFENSE ADVANCED
RESEARCH PROJECTS AGENCY ~ ABOUTUS / OURRESEARCH /

Defense Advanced Research Projects Agency » Program Informatior
Explainable Artificial
Intelligence (XAl)

Dr. Matt Turek

DoD and non-DoD

4_“ System Applications
= bl
— o -
R i Transportation
=
—= Security
* We ar Medicine
age of app!
= Machi Finance
core {s}
- Machine learning models Legal
ue,
itive, and difficult fo Military
people to understand

Figure 1. The Need for Explainable Al



Motivation

 Bayesian networks (BNs) enable probabilistic reasoning about links
between the variables of interest — interpretable decisions

» Used for medical diagnosis, legal reasoning, epidemiology, etc.
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Image Source: Beresniak, A., et al. "A Bayesian network approach to the study of historical epidemiological databases: modelling
meningitis outbreaks in the Niger." Bulletin of the World Health Organization 90 (2012): 412-417a.b45d961fbc



 Bayesian networks (BNs) enable probabilistic reasoning about links
between the variables of interest — interpretable decisions

« Used for medical diagnosis, legal reasoning, epidemiology, etc.
* | earning structure of BNs is compute-intensive — needs parallelism

» Existing libraries for learning BNs support limited or no parallelism
* e.g. bnlearn, pcalg, Tetrad

* Different parallelization strategies have been proposed for various
learning algorithms — difficult to integrate different strategies
« Single parallel library with support for multiple algorithms is desirable



 Exactly learning the structure of BNs is NP-hard
- Efficient parallel solutions can only learn very small networks (<50 variables)

» Heuristic methods are used for learning bigger networks

« Score-based methods rely on a scoring function to choose the structure
* Constraint-based methods rely on conditional independence (Cl) tests

« Multiple parallelization approaches have been proposed for score-
based methods

« Misra et al. (2014) developed an approach that can constructa 15,216
variable BN in less than 172 seconds using 1.57 million cores of Tianhe-2



 Constraint-based methods have received comparatively little attention
» Most studies in the space have focused on the stable-PC algorithm

* Nikolova et al. (2011) parallelized the MMHC (Tsamardinos et al.,
2006) and the PCMB (Pena et al., 2007) algorithms
« Scales well up to 512 cores for learning neighborhoods of 1,000 variables

 Scaling deteriorates as the number of variables are increased — work
distribution strategy is suboptimal




* BN is a graphical representation of a joint probability distribution of a
set of variables (X)
« Decomposes into probabilities of variables conditioned on their parents

« PC %et of z(:\jvariable consists of the variables that °
are dependent on it, given any conditioning set e o

- i.e, X € PC(T)®—I(X, TISVS € X\ {X, T}

« Markov blanket (MB) of a variable consists
the variables that render the variable riﬁg%epg?%éﬁ’?g othér Vatiables "

e i.e, I(X, TIMB(T))VX € X \ ({T} U MB(T))
» Assuming faithfulness, MB(T) = PC(T) U (Parents(X)VX € PC(T))



 Constraint-based algorithms learn BN by conducting repeated ClI
tests using given data set of m observations for the n variables
« Statistical tests, e.qg., G test for discrete data

* Local-to-global algorithms learn PC or MB of the variables separately
and then combine them to get the BN skeleton

 Blanket learning algorithms learn MB sets of the variables first
« Grow-Shrink (GS) (Margaritis & Thrun, 2000)
* Incremental Association MB (IAMB) (Tsamardinos et al., 2003)
* Interleaved IAMB (Inter-IAMB) (Tsamardinos et al., 2003)



* All the algorithms use variations of the Grow-Shrink scheme
» Grow phase: Add a variable to the candidate MB set
« Shrink phase: Remove false positive variables from the candidate MB set

» The algorithms differ in the specifics of how the scheme is iterated

» Choosing variables to be added in Grow phase

* IAMB & Inter-IAMB pick the “most dependent” variable given the current candidate MB set;
GS picks the first dependent variable

» Order of Grow & Shrink phases

* GS & IAMB execute multiple iterations of Grow phase followed by one Shrink phase;
Inter-IAMB interleaves executes Grow and Shrink phases in every iteration

« Symmetry correction is performed for MB sets (X € MB(T) T € MB(X))
 PC sets are learned from the MB sets (PC € MB)



 Key design considerations:
» Variables have different MB set sizes — distributing variables is suboptimal
» Consider variable pairs in parallel instead

« Computations for Cl tests account for more than 94% of sequential run-time
« Conduct Cl tests with similar conditioning set sizes in parallel



 Primary data structures:

« variables is the set of variables for which MB sets are to be computed
» Typicallyinitializedto X for learning BNs

» c—scores is a list of tuples < X,Y, 0y, > suchthat X € variables,Y € X \ {X}
« Tuples with the same X are contiguously arranged in the list
* Oy is the score of Y for additionto the MB set of X

» Distributed data structures in parallel:
 c—scores is block-distributed across processors — c—scores; On processor i
 variables; is the set for which MB sets are computed on processor i



 Parallel Grow phase on processor i

« Update 6, for all the tuples € c—scores;

« Add Y to the MB of X corresponding to the best 6,

« Best 0,y is dependent on the algorithm
« Can be identified using two segmented parallel prefix operations for all the variables

 Parallel Shrink phase on processor i

« Complete MB sets are available for all elements of variables;
» Shrink can be performed locally on every processor

« Parallel Symmetry Correction using algorithm by Nikolova et al. (2011)
* Parallel PC from MB for variables; on processor i



Parallel Framework

[

function CONSTRUCT-SKELETON-GSIAMB():
Input: D, APPLY-HEURISTIC,

REDUCE-HEURISTIC
Output: PC(T') sets for all T' € X
parallel ; = processor’s rank do
Initialize c-scores;, variables;, MB(-) as
described in Section III-A
Initialize neighbors as empty list of tuples
repeat
GROW-PHASE(D, c-scores, variables,
MB, APPLY-HEURISTIC,
REDUCE-HEURISTIC)
until no MB changes on any of the processors
SHRINK-PHASE(D, variables, MB)
SYMMETRY-CORRECTION(variables, MB)
10 Synchronize MB(-) across all the processors
11 GET-PC(D, variables, MB, neighbors)




 Implemented using C++ and MPI (conforms to C++74 and MPI 3.7)
https://github.com/asrivast28/ramBLe

» Optimizations for fast execution in practice
« Algorithm specific optimizations - GS
« Experimented with different statistic computation strategies for Cl tests
« Dynamic load balancing scheme


https://github.com/asrivast28/ramBLe

» Experimental setup

* 64 nodes of the Hive cluster, 16 MPI processes per node
* RHEL 7.6, gcc v9.2.0, MVAPICH2 v2.3.3

» Used real gene-expression data sets to learn gene networks

Genes Observations

N O '
ame rganism (n) (m)
DI S. cerevisiae 5,716 2,577
D2 A. thaliana 18,373 5,102

D3 A. thaliana 18,380 16,838

« Used three simulated data sets (51, S2, and $3) to show scalability
 n = 30,000, m = 10,000; edge addition probabilities: 5e — 5, 1e — 4, and 5e — 4



» Sequential comparison with bnlearn

» Popular library for learning BNs; C implementation interfaces with R

Algorithm Data set Run-time (s) Speedup
bnlearn Ours
DI 8720.0 240.1 36.3
GS D2 X 6 760.3 N/A
D3 X 18 695.0 N/A
Dl 975.9 624.6 1.6
IAMB D2 40605.7 14 529.8 2.8
D3 84403.1 46603.2 1.8
DI 992.0 624.1 1.6
Inter-IAMB | D2 40819.0 14 559.0 2.8
D3 89839.7 48442.4 1.9




» Sequential comparison with bnlearn
» Popular library for learning BNs; C implementation interfaces with R

* BNs learned by our implementations are similar to those by bnlearn

* Recalled 99.84% edges with a precision of 99.92% for D1 data set
« Changes in the ordering of the variables caused these differences

» Parallelism in bnlearn yields diminishing returns beyond a single node

 e.g., IAMB shows a self-speedup of 3.4X on 16 cores for D3 data set
while the self-speedup using 64 cores on four nodes is 3.9X



Experiments & Results

» Strong scaling of our framework — IAMB
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Experiments & Results

» Strong scaling of our framework — Inter-IAMB
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Experiments & Results

» Strong scaling of our framework — GS
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Fraction of total run-time

spent in communication (%)

Experiments & Results

* Investigating the scaling performance of GS
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* The algorithms implemented using our proposed parallel framework
can learn genome-scale gene networks in less than a minute
« Maximum speedup of 844.8X and 82.5% scaling efficiency on 1024 cores
* JAMB and Inter-IAMB show a sustained efficiency of >75% for D2 and D3

 Learning BNs from simulated data sets takes less than two minutes
on 1024 cores, as compared to more than a day sequentially
« Maximum speedup of 845X and 82.5% scaling efficiency on 1024 cores
» GS shows an improved efficiency of >60% for all the data sets



* Proposed a framework for parallelizing multiple BN structure learning
algorithms that rely on MB discovery as an intermediate step

« The algorithms implemented using the framework show good scalability

 Able to learn gene networks from large real data sets in <1 minute
 Beneficial for biologists who want to iteratively search for the best BN

» Showed good scaling for learning BNs from even larger simulated
data sets

 Potential for use in previously unexplored application areas of BNs



» Extend the framework to support other classes of algorithms
 Implement different Cl tests for discrete as well as continuous data

« Enable working with distributed data sets
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