
Ankit Srivastava*

Sriram Chockalingam

Srinivas Aluru

A Parallel Framework for
Constraint-Based Bayesian
Network Learning via
Markov Blanket Discovery

Accepted to be presented at SC20 – November 17th,10-10:30am

• Machine Learning (ML) models are used for decision-making in a
diverse set of fields, e.g., spam filtering, dynamic pricing, etc.
• “Black box” models are typically used for the purpose

Motivation

Image Source: Interpretable Machine Learning — Fairness, Accountability, and Transparency in ML systems

https://medium.com/@ODSC/interpretable-machine-learning-fairness-accountability-and-transparency-in-ml-systems-3ab45d961fbc

• Machine Learning (ML) models are used for decision-making in a
diverse set of fields, e.g., spam filtering, dynamic pricing, etc.
• “Black box” models are typically used for the purpose

• Increasingly, ML is being used in high human-impact areas,
e.g., healthcare, criminal justice, etc.
• Explainable ML is the need of the hour

Motivation

• Bayesian networks (BNs) enable probabilistic reasoning about links
between the variables of interest – interpretable decisions
• Used for medical diagnosis, legal reasoning, epidemiology, etc.

Motivation

Image Source: Beresniak, A., et al. "A Bayesian network approach to the study of historical epidemiological databases: modelling

meningitis outbreaks in the Niger." Bulletin of the World Health Organization 90 (2012): 412-417a.b45d961fbc

• Bayesian networks (BNs) enable probabilistic reasoning about links
between the variables of interest – interpretable decisions
• Used for medical diagnosis, legal reasoning, epidemiology, etc.

• Learning structure of BNs is compute-intensive – needs parallelism

• Existing libraries for learning BNs support limited or no parallelism
• e.g., bnlearn, pcalg, Tetrad

• Different parallelization strategies have been proposed for various
learning algorithms – difficult to integrate different strategies
• Single parallel library with support for multiple algorithms is desirable

Motivation

• Exactly learning the structure of BNs is NP-hard
• Efficient parallel solutions can only learn very small networks (<50 variables)

• Heuristic methods are used for learning bigger networks
• Score-based methods rely on a scoring function to choose the structure

• Constraint-based methods rely on conditional independence (CI) tests

• Multiple parallelization approaches have been proposed for score-
based methods
• Misra et al. (2014) developed an approach that can construct a 15,216

variable BN in less than 172 seconds using 1.57 million cores of Tianhe-2

Related Works

• Constraint-based methods have received comparatively little attention
• Most studies in the space have focused on the stable-PC algorithm

• Nikolova et al. (2011) parallelized the MMHC (Tsamardinos et al.,
2006) and the PCMB (Pena et al., 2007) algorithms
• Scales well up to 512 cores for learning neighborhoods of 1,000 variables

• Scaling deteriorates as the number of variables are increased – work
distribution strategy is suboptimal

Related Works

• BN is a graphical representation of a joint probability distribution of a
set of variables (𝒳)
• Decomposes into probabilities of variables conditioned on their parents

• PC set of a variable consists of the variables that
are dependent on it, given any conditioning set
• i.e., 𝑋 ∈ 𝑃𝐶 𝑇 ¬𝐼 𝑋, 𝑇 𝒮 ∀𝒮 ⊆ 𝒳 ∖ {𝑋, 𝑇}

• Markov blanket (MB) of a variable consists of
the variables that render the variable independent of other variables
• i.e., 𝐼 𝑋, 𝑇 𝑀𝐵(𝑇) ∀𝑋 ∈ 𝒳 ∖ (𝑇 ∪ 𝑀𝐵(𝑇))
• Assuming faithfulness, 𝑀𝐵 𝑇 = 𝑃𝐶 𝑇 ∪ (𝑃𝑎𝑟𝑒𝑛𝑡𝑠 𝑋 ∀𝑋 ∈ 𝑃𝐶 𝑇)

Background

𝑃 𝒳 = 𝑃 𝑆 𝑃 𝑇 𝑌 𝑃 𝑊 𝑇 𝑃(𝑋| 𝑌, 𝑍)𝑃 𝑌 𝑃 𝑍 𝑆, 𝑇

• Constraint-based algorithms learn BN by conducting repeated CI
tests using given data set of 𝑚 observations for the 𝑛 variables
• Statistical tests, e.g., G2 test for discrete data

• Local-to-global algorithms learn PC or MB of the variables separately
and then combine them to get the BN skeleton

• Blanket learning algorithms learn MB sets of the variables first
• Grow-Shrink (GS) (Margaritis & Thrun, 2000)
• Incremental Association MB (IAMB) (Tsamardinos et al., 2003)
• Interleaved IAMB (Inter-IAMB) (Tsamardinos et al., 2003)

Background

• All the algorithms use variations of the Grow-Shrink scheme
• Grow phase: Add a variable to the candidate MB set

• Shrink phase: Remove false positive variables from the candidate MB set

• The algorithms differ in the specifics of how the scheme is iterated
• Choosing variables to be added in Grow phase

• IAMB & Inter-IAMB pick the “most dependent” variable given the current candidate MB set;
GS picks the first dependent variable

• Order of Grow & Shrink phases
• GS & IAMB execute multiple iterations of Grow phase followed by one Shrink phase;

Inter-IAMB interleaves executes Grow and Shrink phases in every iteration

• Symmetry correction is performed for MB sets (𝑋 ∈ 𝑀𝐵 𝑇 𝑇 ∈ 𝑀𝐵(𝑋))

• PC sets are learned from the MB sets (PC ⊆ MB)

Blanket Learning Algorithms

• Key design considerations:
• Variables have different MB set sizes – distributing variables is suboptimal

• Consider variable pairs in parallel instead

• Computations for CI tests account for more than 94% of sequential run-time
• Conduct CI tests with similar conditioning set sizes in parallel

Parallel Framework

• Primary data structures:
• 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 is the set of variables for which MB sets are to be computed

• Typically initialized to 𝒳 for learning BNs

• 𝑐⎯𝑠𝑐𝑜𝑟𝑒𝑠 is a list of tuples < 𝑋, 𝑌, 𝜃𝑋𝑌 > such that 𝑋 ∈ 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠, 𝑌 ∈ 𝒳 ∖ {𝑋}
• Tuples with the same 𝑋 are contiguously arranged in the list

• 𝜃𝑋𝑌 is the score of 𝑌 for addition to the MB set of 𝑋

• Distributed data structures in parallel:
• 𝑐⎯𝑠𝑐𝑜𝑟𝑒𝑠 is block-distributed across processors – 𝑐⎯𝑠𝑐𝑜𝑟𝑒𝑠𝑖 on processor 𝑖

• 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠𝑖 is the set for which MB sets are computed on processor 𝑖

Parallel Framework

• Parallel Grow phase on processor 𝑖
• Update 𝜃𝑋𝑌 for all the tuples ∈ 𝑐⎯𝑠𝑐𝑜𝑟𝑒𝑠𝑖
• Add 𝑌 to the MB of 𝑋 corresponding to the best 𝜃𝑋𝑌

• Best 𝜃𝑋𝑌 is dependent on the algorithm

• Can be identified using two segmented parallel prefix operations for all the variables

• Parallel Shrink phase on processor 𝑖
• Complete MB sets are available for all elements of 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠𝑖
• Shrink can be performed locally on every processor

• Parallel Symmetry Correction using algorithm by Nikolova et al. (2011)

• Parallel PC from MB for 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠𝑖 on processor 𝑖

Parallel Framework

Parallel Framework

Implementation

• Implemented using C++ and MPI (conforms to C++14 and MPI 3.1)
https://github.com/asrivast28/ramBLe

• Optimizations for fast execution in practice
• Algorithm specific optimizations - GS

• Experimented with different statistic computation strategies for CI tests

• Dynamic load balancing scheme

https://github.com/asrivast28/ramBLe

• Experimental setup
• 64 nodes of the Hive cluster, 16 MPI processes per node
• RHEL 7.6, gcc v9.2.0, MVAPICH2 v2.3.3

• Used real gene-expression data sets to learn gene networks

• Used three simulated data sets (𝑆1, 𝑆2, and 𝑆3) to show scalability
• 𝑛 = 30,000; 𝑚 = 10,000; edge addition probabilities: 5𝑒 − 5, 1𝑒 − 4, and 5𝑒 − 4

Experiments & Results

• Sequential comparison with bnlearn
• Popular library for learning BNs; C implementation interfaces with R

Experiments & Results

• Sequential comparison with bnlearn
• Popular library for learning BNs; C implementation interfaces with R

• BNs learned by our implementations are similar to those by bnlearn
• Recalled 99.84% edges with a precision of 99.92% for 𝐷1 data set

• Changes in the ordering of the variables caused these differences

• Parallelism in bnlearn yields diminishing returns beyond a single node
• e.g., IAMB shows a self-speedup of 3.4X on 16 cores for 𝐷3 data set

while the self-speedup using 64 cores on four nodes is 3.9X

Experiments & Results

• Strong scaling of our framework – IAMB

Experiments & Results

Number of cores Number of cores

Sp
ee
d
u
p

E
ff
ic
ie
n
cy

(%
)

• Strong scaling of our framework – Inter-IAMB

Experiments & Results

Number of cores Number of cores

Sp
ee
d
u
p

E
ff
ic
ie
n
cy

(%
)

• Strong scaling of our framework – GS

Experiments & Results

Number of cores Number of cores

Sp
ee
d
u
p

E
ff
ic
ie
n
cy

(%
)

• Investigating the scaling performance of GS

Experiments & Results

• The algorithms implemented using our proposed parallel framework
can learn genome-scale gene networks in less than a minute
• Maximum speedup of 844.8X and 82.5% scaling efficiency on 1024 cores

• IAMB and Inter-IAMB show a sustained efficiency of >75% for 𝐷2 and 𝐷3

• Learning BNs from simulated data sets takes less than two minutes
on 1024 cores, as compared to more than a day sequentially
• Maximum speedup of 845X and 82.5% scaling efficiency on 1024 cores

• GS shows an improved efficiency of >60% for all the data sets

Experiments & Results

• Proposed a framework for parallelizing multiple BN structure learning
algorithms that rely on MB discovery as an intermediate step
• The algorithms implemented using the framework show good scalability

• Able to learn gene networks from large real data sets in <1 minute
• Beneficial for biologists who want to iteratively search for the best BN

• Showed good scaling for learning BNs from even larger simulated
data sets
• Potential for use in previously unexplored application areas of BNs

Conclusions

• Extend the framework to support other classes of algorithms

• Implement different CI tests for discrete as well as continuous data

• Enable working with distributed data sets

Future Works

Thank you!

Link: https://github.com/asrivast28/ramBLe

Email: asrivast@gatech.edu

https://github.com/asrivast28/ramBLe
mailto:asrivast@gatech.edu

