A Framework for Differentiable Discovery Of Graph Algorithms

Hanjun Dai, Xinshi Chen, Yu Li, Xin Gao and Le Song

Google Research & Georgia Tech & KAUST

Combinatorial optimization over graph

GNN = Parametrized distributed local graph algorithm

Distributed Local Graph Algorithm = Graph Representation + Iterative Update

Differentiable Algorithm Discovery (DAD) framework

1. Can we discover new algorithms?

2. How to learn these algorithms? Supervised, Unsupervised Reinforcement Learning 3. Can we interpret what's discovered?

Search (Input) Space Design for GNN

Motivating example

- The best known algorithm for solving a general linear system takes time $\mathcal{O}(n^{2.373})$
- Kelner et al. (2013) proposed an algorithm for solving Laplacian system:

Lx = b, where L is Laplacian matrix

in nearly-linear time.

Step 1: Find a low-stretch spanning tree and obtain an initial solution on the tree.

Step 2: Refine the initialized solution by iteratively operating on local cycles in the original graph.

Cheap Solution as Global Features

Cheap Solution as Global Features

Cheap Solution as Global Features

Learning Local Iterative Algorithms with GNN

Supervised

- For each graph G, a solution y^* is obtained by running expensive solver
- Learn GNN-based algorithm which can imitate y^* but runs much faster

Unsupervised

• Many graph problems can be formulated as integer programming (IP) problems:

 $\min_{\mathbf{y} \in \{0,1\}^{|V|}} f(Y;G) \text{ subject to } g_i(y;G) \le 0 \text{ for } i = 1, \dots, l$

• Construct unsupervised training loss based on optimization objective f and constraints g $L_U(p,G) \coloneqq E[f(Y;G)] + \beta \cdot P[g_i(Y;G) \le 0]$ where $Y \sim \text{Bernoulli}(p)$

Better learned algorithms with global information

- Comparison of our features to other features
 - Random features
 - Random one-hot encoding
 - Port Numbering + Weak 2-coloring (CPNGNN)

Our approach is consistently better

A deeper understanding of the performance

- Extrapolation
 - train on small graphs
 - test on graphs up to 1024 nodes

Minimum Vertex Cover on Barabasi Albert random graphs

Explain the Learned GNN Algorithms

Explainer

Explainer architecture

Information theoretic learning

Discovery of greedy-like behavior

Explanation setting:

Iimit to 5 nodes and 10 edges to explain each target node

Takeaway:

- Greedy heuristics are the best performing ones on these tasks
- GNN understands and learns the meaning of greedy algorithm features

Discovery of anchor nodes

What global features are effective?

Minimum Vertex Cover

Q/A

Discovery of anchor nodes

Node color: the darker, the more frequent of being selected for explanation

Minimum Vertex Cover

- Observation
 - There exists a set of "anchor nodes"
 - Anchor nodes tends to be diverse

- Hypothesis
 - Anchor nodes are like "landmarks" in the graph
 - GNN compares the target node with anchor nodes to make prediction

Connections: GNN with anchor nodes: Position/distance aware GNNs (You et.al, 2018; Li et.al, 2020)

What global features are effective?

- Explanation setting:
 - Max-cut problem
 - Iimit to 2 or 3 global features
- Budget=2
 - Greedy is always selected;
 - AKPW or max-spanning tree can be selected with equal chances;
 - Two max-spanning tree solutions will not be selected at the same time;

- feature selection is consistent across different target nodes;
- The {Greedy, AKPW, Max-Spanning} are the best performing three;
- Again, two Max-spanning trees solutions will not appear at the same time, even though itself performs better than AKPW;