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Objective

Recovering sparse conditional 
independence graph G from data



Applications

Biology Finance



Sparse Graph Recovery Problem Formulation

● Given M samples from a distribution: 
● Estimate matrix ‘ϴ’ corresponding to the sparse graph

Objective function: L1 regularized maximum likelihood estimation

Regularization 
Parameter

Covariance matrix



Existing Optimization Algorithms

G-ISTA

Proximal 
gradient 
method

ADMM

Alternating 
direction 

method of 
multipliers

BCD

Block 
coordinate 

descent 
method

 
Updates each column (and the corresponding row) of the precision matrix 

iteratively by solving a sequence of lasso problems



Hard to Tune Hyperparameters

‘Grid search’ is 
tedious and 
non-trivial 

Outcomes 
highly sensitive 

to penalty 
parameters

Tuning 
hyperparameters for 
Traditional Methods

Errors of different 
parameter combinations



Mismatch in Objectives

Log-determinant 
estimator

Recovery 
Objective 
(NMSE)

mismatch!



Limitations of Existing Optimization Algorithms

Pradeep Ravikumar, Martin J Wainwright, Garvesh Raskutti, Bin Yu, et al. High-dimensional covariance estimation by 
minimizing l1-penalized log-determinant divergence. Electronic Journal of Statistics, 5:935–980, 2011.

Consistency of 
estimator

Based on ‘carefully chosen conditions’ like
1. Lower bound on sample size
2. Sparsity of Ө
3. Degree of graph
4. Magnitude of covariance entries

Limitations of the 
convex formulation

Room for 
Improvement!



Big Picture Question



Deep Learning Model Example

DeepGraph (DG)` architecture.The input is first standardized and then the sample 
covariance matrix is estimated. A neural network consisting of multiple dilated 

convolutions (Yu & Koltun, 2015) and a final 1 × 1 convolution layer is used to predict 
edges corresponding to non-zero entries in the precision matrix.

* DeepGraph-39 model from Fig.2 of “Learning to Discover Sparse Graphical Models” by Belilovsky et. al.



Challenges

#parameters 
scale dim^2

Interpretable

SPD 
constraint

Permutation 
Invariance

DNNs

CNNs

Autoencoders, 
VAEs, RNNs

Challenges in Designing Learning Models

Challenges

#parameters 
scale dim^2

Interpretable

SPD 
constraint

Permutation 
Invariance

DNNs

CNNs

Autoencoders, 
VAEs, RNNs

Traditional Approaches



GLAD: DL model based on Unrolled Algorithm
Alternating Minimization (AM) algorithm: Objective function

AM: Update Equations (Nice closed form updates!)
Modifications

Unroll to fixed 
#iterations ‘K’ 

Treat it as a 
deep model



GLAD: Training

Loss function: Frobenius norm with 
discounted cumulative reward

Gradient Computation through matrix 
square root in the GLADcell:

For any SPD matrix X:      

Solve Sylvester’s equation for d(X1/2):

Optimizer for training: ‘Adam’. 
Learning rate chosen between [0.01, 
0.1]  in conjunction with Multi-step 
LR scheduler.



Use Neural Networks for (⍴, λ)

# of layers 
= 2
Hidden unit 
size = 3

# of layers 
= 4
Hidden unit 
size = 3

Minimalist 
designing of Neural 

Networks

Non-Linearity:
Hidden layers = ‘tanh’
Final layer = ‘sigmoid’



GLAD

GLAD

Using algorithm 
structure as 

inductive bias for 
designing 

unrolled DL 
architectures

GLADcell



GLAD

Minimalist 
Model

Interpretable

SPD 
constraint

Permutation 
Invariance

Desiderata for GLAD

GLAD: Graph recovery Learning Algorithm using Data-driven training 

GLAD

Minimalist 
Model

Interpretable

SPD 
constraint

Permutation 
Invariance



Experiments: Convergence

Fixed Sparsity level 
s=0.1

Mixed Sparsity level 
s 〜U(0.05, 0.15)

GLAD vs 
traditional 
methods

Train/finetuning 
using 10 random 
graphs

Test on 100 
random graphs



Experiments: Recovery probability

GLAD able to recover true 
edges with considerably 

fewer samples

PS is non-zero if all graph 
edges are recovered with 

correct signs

Sample complexity for model 
selection consistency



Experiments: Data Efficiency

Methods M=15 M=35 M=100

BCD 0.578±0.006 0.639±0.007 0.704±0.006

DeepGraph-39 0.664±0.008 0.738±0.006 0.759±0.006

DG-39+P 0.672±0.008 0.740±0.007 0.771±0.006

GLAD 0.788±0.003 0.811±0.003 0.878±0.003

AUC` on 100 test graphs with dimension=39, Gaussian random 
graph sparsity=0.05 and edge values sampled from ~U(-1, 1).

* DeepGraph-39 model from “Learning to Discover Sparse Graphical Models” by Belilovsky et. al.
` Table 1. of Belilovsky et. al.

GLAD vs DG-39*

Training graphs 
100 vs 100,000

# of parameters 
<25 vs >>>25

Runtime             
< 30 mins vs 
several hours



Gene Regulation Data: SynTReN details

Synthetic gene expression 
data generator creating 

biologically plausible networks

Models biological & 
correlation noises 

The topological characteristics 
of generated networks closely 

resemble transcriptional 
networks

Contains instances of Ecoli 
bacteria and other true 

interaction networks

SynTReN



Gene Regulation Data: Ecoli network predictions

Recovered graph structures for a sub-network of the E. coli consisting of 43 genes 
and 30 interactions with increasing samples. All noises sampled ~U(0.01, 0.1) 

Increasing the samples reduces the fdr by discovering more true edges.

GLAD trained on 
Erdos-Renyi 

graphs of 
dimension=25. 

# of train/valid 
graphs were 

20/20.

1 batch of M 
samples were 

taken per graph



Theoretical Analysis: Assumptions

Assumption 1 just upper bounds sparsity.

Assumption 2 guarantees that Ө* exists. 



Theoretical Analysis: Linear Convergence of AM
Recalling AM Update EquationsAn adaptive sequence of 

penalty parameters should 
achieve a better error bound

AM has linear convergence rate. 
Can run for fixed iterations with 

reasonable error margins

Summary Optimal parameter values depends on the 
prediction error. Hard to choose  manually 



Conclusion

Unrolled DL architecture, 
GLAD, for sparse graph 

recovery

Empirical evidence that 
learning can improve 

graph recovery

Highlighting the potential of 
using algorithms as 
inductive bias for DL 

architectures

Empirically, GLAD is able to 
reduce sample complexity



Thank you!


