GLAD: Learning Sparse Graph Recovery

Harsh Shrivastava

Joint work with Xinshi Chen, Binghong Chen, Guanghui Lan, Srinvas Aluru, Han Liu, Le Song

Objective

Recovering sparse conditional independence graph G from data

 $\Theta_{ij} = 0 \Leftrightarrow X_i \perp X_j$ other variables

Applications

Biology

Gene Expression data - Microarray experiments 1.1 1 A A 1.1.1.1 1111 Algorithm Gene regulatory

network

Finance Time-series features 1.1.1 . 1.1.1.1 Algorithm 1.1.1.1

Relationship between assets

Sparse Graph Recovery Problem Formulation

- Given M samples from a distribution: $X \in \mathbb{R}^{M \times D}$
- Estimate matrix 'O' corresponding to the sparse graph

Existing Optimization Algorithms

 $-\log(\det \Theta) + \operatorname{tr}(\widehat{\Sigma}\Theta) + \rho \|Z\|_1 + \langle \lambda, \Theta - Z \rangle + \frac{1}{2}\beta \|Z - \Theta\|_F^2.$ Taking $U := \lambda/\beta$ as the scaled dual variable, the update rules for the ADMM algorithm are

$$\Theta_{k+1} \leftarrow \left(-Y + \sqrt{Y^{\top}Y + (4/\beta)I}\right)/2, \text{ where } Y = \widehat{\Sigma}/\beta - Z_k + U_k$$
$$Z_{k+1} \leftarrow \eta_{\rho/\beta}(\Theta_{k+1} + U_k), \quad U_{k+1} \leftarrow U_k + \Theta_{k+1} - Z_{k+1}$$

Hard to Tune Hyperparameters

 $-\log(\det\Theta) + \operatorname{tr}(\widehat{\Sigma}\Theta) + \rho \left\| Z \right\|_1 + \langle \lambda, \Theta - Z \rangle + \frac{1}{2}\beta \| Z - \Theta \|_F^2$

Mismatch in Objectives

Limitations of Existing Optimization Algorithms

Pradeep Ravikumar, Martin J Wainwright, Garvesh Raskutti, Bin Yu, et al. High-dimensional covariance estimation by minimizing I1-penalized log-determinant divergence. Electronic Journal of Statistics, 5:935–980, 2011.

Big Picture Question

- Given a collection of ground truth precision matrix Θ*, and the corresponding empirical covariance Σ
- Learn an algorithm f which directly produces an estimate of the precision matrix 0?

$$\min_{f} \frac{1}{|\mathcal{D}|} \sum_{(\widehat{\Sigma}_{i},\Theta_{i}^{*})\in\mathcal{D}} \|\Theta_{i} - \Theta_{i}^{*}\|_{F}^{2}, \qquad s.t. \ \Theta_{i} = f(\widehat{\Sigma}_{i})$$

Deep Learning Model Example

DeepGraph (DG)` architecture. The input is first standardized and then the sample covariance matrix is estimated. A neural network consisting of multiple dilated convolutions (Yu & Koltun, 2015) and a final 1 × 1 convolution layer is used to predict edges corresponding to non-zero entries in the precision matrix.

* DeepGraph-39 model from Fig.2 of "Learning to Discover Sparse Graphical Models" by Belilovsky et. al.

Challenges in Designing Learning Models

#parameters scale dim² DNN/ Permutation SPD S Challenges Invariance constraint encl S. VAEs, RNNs Interpretable

Traditional Approaches

GLAD: DL model based on Unrolled Algorithm

Alternating Minimization (AM) algorithm: Objective function

$$\widehat{\Theta}_{\lambda}, \widehat{Z}_{\lambda} := \arg\min_{\Theta, Z \in \mathcal{S}_{++}^d} - \log(\det \Theta) + \operatorname{tr}(\widehat{\Sigma}\Theta) + \rho \left\| Z \right\|_1 + \frac{1}{2}\lambda \left\| Z - \Theta \right\|_F^2$$

AM: Update Equations (Nice closed form updates!)

$$\Theta_{k+1}^{\mathrm{AM}} \leftarrow \frac{1}{2} \left(-Y + \sqrt{Y^{\top}Y + \frac{4}{\lambda}I} \right), \text{ where } Y = \frac{1}{\lambda} \widehat{\Sigma} - Z_k^{\mathrm{AM}}$$
$$Z_{k+1}^{\mathrm{AM}} \leftarrow \eta_{\rho/\lambda}(\Theta_{k+1}^{\mathrm{AM}}), \text{ where } \eta_{\rho/\lambda}(\theta) := \operatorname{sign}(\theta) \max(|\theta| - \rho/\lambda, 0)$$

Modifications

Unroll to fixed #iterations 'K'

Treat it as a deep model

GLAD: Training

Loss function: Frobenius norm with discounted cumulative reward

$$\min_{f} \ \log_{f} := \frac{1}{n} \sum_{i=1}^{n} \sum_{k=1}^{K} \gamma^{K-k} \left\| \Theta_{k}^{(i)} - \Theta^{*(i)} \right\|_{F}^{2}$$

Optimizer for training: 'Adam'. Learning rate chosen between [0.01, 0.1] in conjunction with Multi-step LR scheduler. Gradient Computation through matrix square root in the GLADcell: For any SPD matrix X: $X = X^{1/2}X^{1/2}$ Solve Sylvester's equation for $d(X^{1/2})$: $dX = d(X^{1/2})X^{1/2} + X^{1/2}d(X^{1/2})$

Use Neural Networks for (ρ, λ)

GLAD

Algorithm 1: GLAD

Function GLADcell($\widehat{\Sigma}, \Theta, Z, \lambda$): $\lambda \leftarrow \Lambda_{nn}(\|Z - \Theta\|_F^2, \lambda)$ $Y \leftarrow \lambda^{-1} \widehat{\Sigma} - Z$ $\Theta \leftarrow \frac{1}{2} \left(-Y + \sqrt{Y^{\top}Y + \frac{4}{\lambda}I} \right)$ **GLADcell** For all i, j do $\rho_{ij} = \rho_{nn}(\Theta_{ij}, \widehat{\Sigma}_{ij}, Z_{ij})$ $| Z_{ij} \leftarrow \eta_{\rho_{ii}}(\Theta_{ij})$ return Θ, Z, λ Function GLAD($\widehat{\Sigma}$): $\Theta_0 \leftarrow (\widehat{\Sigma} + tI)^{-1}, \lambda_0 \leftarrow 1$ For k = 0 to K - 1 do $\Theta_{k+1}, Z_{k+1}, \lambda_{k+1}$ \leftarrow GLADcell($\widehat{\Sigma}, \Theta_k, Z_k, \lambda_k$) return Θ_K, Z_K

GLAD

Using algorithm structure as inductive bias for designing unrolled DL architectures

Algorithm 1: GLAD **Function** GLADcell $(\widehat{\Sigma}, \Theta, Z, \lambda)$: $\lambda \leftarrow \Lambda_{nn}(\|Z - \Theta\|_F^2, \lambda)$ $Y \leftarrow \lambda^{-1} \widehat{\Sigma} - Z$ $\Theta \leftarrow \frac{1}{2} \left(-Y + \sqrt{Y^\top Y + \frac{4}{\lambda} I} \right)$ For all i, j do $\begin{array}{c} \rho_{ij} = \rho_{nn}(\Theta_{ij}, \widehat{\Sigma}_{ij}, Z_{ij}) \\ Z_{ij} \leftarrow \eta_{\rho_{ij}}(\Theta_{ij}) \end{array}$ return Θ, Z, λ **Function** GLAD($\widehat{\Sigma}$): $\Theta_0 \leftarrow (\widehat{\Sigma} + tI)^{-1}, \lambda_0 \leftarrow 1$ For k = 0 to K - 1 do $\Theta_{k+1}, Z_{k+1}, \lambda_{k+1}$ return Θ_K, Z_K

GLAD: Graph recovery Learning Algorithm using Data-driven training

Experiments: Convergence

Experiments: Recovery probability

Experiments: Data Efficiency

GLAD vs DG-39*	Methods	M=15	M=35	M=100
	BCD	0.578±0.006	0.639±0.007	0.704±0.006
Training graphs 100 vs 100.000	DeepGraph-39	0.664±0.008	0.738±0.006	0.759±0.006
# of parameters <25 vs >>>25	DG-39+P	0.672±0.008	0.740±0.007	0.771±0.006
	GLAD	0.788±0.003	0.811±0.003	0.878±0.003
Runtime < 30 mins vs	AUC` on 100 tes	st araphs with dim	nension=39. Gaus	ssian random

graph sparsity=0.05 and edge values sampled from $\sim U(-1, 1)$.

* DeepGraph-39 model from "Learning to Discover Sparse Graphical Models" by Belilovsky et. al.

Table 1. of Belilovsky et. al.

several hours

Gene Regulation Data: SynTReN details

Synthetic gene expression data generator creating biologically plausible networks

Models biological & correlation noises

SynTReN

The topological characteristics of generated networks closely resemble transcriptional networks

Contains instances of Ecoli bacteria and other true interaction networks

Gene Regulation Data: Ecoli network predictions

Recovered graph structures for a sub-network of the E. coli consisting of 43 genes and 30 interactions with increasing samples. All noises sampled ~U(0.01, 0.1) Increasing the samples reduces the fdr by discovering more true edges.

Theoretical Analysis: Assumptions

Assumption 1. Let the set $S = \{(i, j) : \Theta_{ij}^* \neq 0, i \neq j\}$. Then $card(S) \leq s$.

Assumption 2. $\Lambda_{\min}(\Sigma^*) \ge \epsilon_1 > 0$ (or equivalently $\Lambda_{\max}(\Theta^*) \le 1/\epsilon_1$), $\Lambda_{\max}(\Sigma^*) \le \epsilon_2$ and an upper bound on $\|\widehat{\Sigma}\|_2 \le c_{\widehat{\Sigma}}$.

Assumption 1 just upper bounds sparsity.

Assumption 2 guarantees that Θ^* exists.

Theoretical Analysis: Linear Convergence of AM

Conclusion

Unrolled DL architecture, GLAD, for sparse graph recovery

Empirically, GLAD is able to reduce sample complexity

Empirical evidence that learning can improve graph recovery Highlighting the potential of using algorithms as inductive bias for DL architectures

